您当前的位置:首页 > 行业资讯

基于滑模控制感应加热电源的电流仿真分析

时间:2015-01-26  来源:扁平线圈电感厂家  点击:

1 引 言

本文介绍一种应用软开关技术的感应加热逆变电源控制器。运用软开关技术,功率器件在电流过零点时进行切换,电流控制器采用离散时间状态。在电路参数有规律的采样中,输出电流可以离散化,得到离散数学模型。针对感应加热电源逆变控制器,提出了一种准滑模控制策略。该控制方案的优点一体电感有:设计的系统控制简单,容易满足实际的工业应用,可进行数字化处理;设计的系统控制对逆变器参数变化不敏感;控制系统可以实现全范围的系统操作。

采用滑模控制方式的逆变器与传统控制方式相比,具有良好的动态特性、鲁棒性以及在电源和负载大范围变化时能保证系统稳定性的优点。滑模控制方式要求全状态变量反馈,且需要相应的基准参考量,增加电路设计的复杂性,所以一般的滑模控制方式大多停留在理论分析和仿真阶段。

滑模控制与常规控制的根本区别在于控制的不连续性,即一种使系统“结构”随时间变化的开关特性。由于功率变换器中开关元件的存在,使滑模变结构控制理论得到广泛应用。

11.jpg

2 负载回路的数学模型

图1为串联谐振感应加热系统电路结构图,其中负载回路由电容Cc、感抗L和电阻R串联形成振荡回路。假设直流电压Vdc连续,C远大于振荡电容Cc,变压器变比N为1。

假定初始电流为零,负载电路上电压为VS,则输出电流i0和电容电压vc的时域方程为:

1.jpg

2.jpg

由于采用软开关技术,系统的开关频率等于振荡频率。串联谐振电路的输入电压vs可由以下开关状态决定:

3.jpg

为方便地表述逆变器运行状态,引工字电感入一个新的离散变量M(k)如下;

4.jpg

图2为运行状态描述,(a)为开关导通状态;(b)为输出电流io,整流电流∣io∣,参考电流Iref,每半周期电流绕行电感峰值Io;(c)为运行状态(1:输入功率模式,0:自由衰减模式);(d)变压器二次侧电压Vs。

22.jpg

于是,式(3)可改写成为:

5.jpg

该式表明,运行状态一旦确定,Vs的幅值为Udc,符号由i0(t)决定,式(5)中T=π/ωd是半个振荡周期,每半个振荡周期的输出电流峰值绝对值Io和电容电压Vc可用离散变量表示。由于Q远大于1,可认为da7846193c9cf3a47b238fe548acedce.jpg;Vc比Io滞后π/2,可得差分方程:

6.jpg

电容电压Vc离散状态的动态峰值由式(7)自身表示。将式(7)代入式(6),就可得负载回路的离散电流状态方程:

8.jpg

M=1电路工作在输入功率模式下,谐振环节电流持续增加;

电感器的用途

M=0电路工作在自由衰减模式下,谐振环节电流不断减小;

M=-1电路工作在再生功率模式下,谐振环节电流较自由衰减模式减小更快;

本文只使用前2种工作模式,即在功率输入与自由衰减2种状态运行,变量u(k+1)表示电流控制强度,实际取值为{1,0.5,0}。根据以上分析得到的离散电流动态模型,可分析电流控制器设计方案。

3 滑模变结构电流控制策略

本节讨论一种应用比例积分滑模的电流控制技术。目的是使在稳态下输出电流峰值的绝对值Io有一个较小的电流偏移量时,能够较为准确地跟随于期望的参考电流Iref,在阶跃输入时可以有快速的瞬态响应和较小的超调量。

大电流电感

有机电致发光产品的研发现状摘要:有机电致发光器件(OLED)具有驱动电压低、主动发光等优势,在平板显示领域引起了广泛的关注。本文介绍了近年来有机电致发光产品的研发状况,并展望了OLED的商业前景。关键词:OLED;PLED;平

谈谈混合光源技术 4月08日 第三届·无线通信技术研讨会 立即报名 12月04日 2015•第二届中国IoT大会 精彩回顾 10月30日ETF•智能硬件开发技术培训会 精彩回顾 10月23日ETF•第三届 消费

DMA10整流模块原理图

DMA10整流模块原理图




你用 iPhone 吗?你用 Android 吗?你的手机里有电子设计用的软件吗?在 APP S电感器tore 或者安卓市场,搜索 DA

注塑加工厂


上一篇基于NCL30000的单段式CrM TRIAC调光LED驱动器设计

下一篇基于PLC和脉冲伺服的枕式包装机应用设计


  
  温馨提示
网站首页 | 产品展示 | 科技前沿 | 行业资讯
本公司专业研发、设计、生产、销售贴片电感、插件电感、功率电感、大电流电感、扁平线圈电感、一体成型电感。
专业电感生产制造商,品质优异、交期快。
在线客服
热线电话