您当前的位置:首页 > 行业资讯

瞬变光辐射采集系统设计

时间:2015-01-09  来源:扁平线圈电感厂家  点击:
)和空标志()控制数据的溢出和空读,仿真存储器满时写入数据,能方便地进行任意字深和字长的扩展。

3 FPGA控制逻辑设计
数据采集系统以FPGA为核心完成自适应阈值设定,工作模式切换、变频采样存储以及按照接口协议下传数据。数据采样和存储控制流程如图3所大电流电感示。

b.jpg


3.1 自适应阈值设定
自适应阈值的设定是根据当前背景噪声的大小进行现有阈值进行更新。系统默认的工作状态是背景检测模式,当采集到系统所要求的数据个数后,将这些数据求其有效值后乘以一个加权系数(一般情况下是5~10)作为当前的阈值。系统每隔一段时间给FPGA重新赋阈值。共模电感当所采集的数据的幅值连续超过当前阈值设定的次数时,此时系统判定当前的背景信号发生,FPGA控制切换相关的电路,启动相关的电路工作。这样做的目的是防止高能粒子撞击光学镜头或是光罩,瞬间产生超过当前阈值的能量造成误触发。
3.2 变频存储的实现
为了减小信号处理的数据量,根据目标信号的特征,可采用变速率存储技术。尽管所探测的瞬变光辐射信号的最高频率一般在10 kHz左右,根据奈奎斯特采样定理,采样频率只要在20 kHz以上即可以无失真的还原信号,但是所要探测的光辐射信号中有一些关键峰值到达时刻最小不到半个毫秒,高速率采样有助于提高计算峰值到达时刻的精度,同时有利于提高A/D的信噪比。A/D采集系统初始的采样频率为200 kHz,每隔32个采样点,存储频率下降50%。

c.jpg


在电路中采用的方法是:A/D转换器按照固定的转换频率进行模拟量到数字量的转换,通过FPGA控制数据的变速率存储。其具体的VHDL设计步骤如下:
(1)实现采样时钟的逐次分频;
(2)调整逐次分频的占空比模压电感器,以防止数据存储错误;
(3)设计使能信号,实现对每组只存储32点。
由于系统对目标信号采集时间长度是固定的,故变频存储的变频次数是有限的。初始存储时间间隔△t=0.01 ms,其变频次数不超过16次。故本方案中电感参数设计一个16位计数器counter16,对200 kHz采样时钟计数。计数器counter16的第0~15位的输出,即可以实现对200 kHz采样时钟的逐次二分频。但是由于从counter16(1)开始,每个低位输出时对应着K个有效数据,但存储的数据只会是最后一个有效数据,这样可能会造成数据存储出错,故需要对counter16(1)~counter16(15)进行占空比调整。将占空比从1:1调整为1:(2K-1),其中K为整数(K=2~32 768)。调整占空比VHDL的思路为设计一个16位的counter16_v计数器,将counter16的相应位进行相与后赋给相应的counter16_v一体成型电感器。
由于每组只存储32个数据,因此对应每组还要设计相应的16 b使能信号dcnt。方法是对clk_200K计数,存储开始后,开始64个clk_200K时钟将第一组数据使能信号dcnt(o)置为高电平,然后保持低;接着对128个clk_200K时钟将第二组数据使能dcnt(1)置为高电平,然后保持低。按照这种方法可将16个使能信号从dcnt(0)~dent(15)设置好。变频存储的使能频率为ad_clk。

d.jpg


这里给出基于Altera公司的FPGA Flex10K系列的EPF10K20TC144-3。图5为变频存储时,采样频率clk_200K与其他信号关系及其时序波形。系统先以默认的采样频率进行采样,当识别检测模块判定信号发生时(siggen变为高电平),开始输出经过变频的采样数据,每隔32点,存储频率下降50%,直到系统所要求的数据点数为止,采集到波形如图6所示。当采样的数据个数符合系统的要求后siggen信号变为低电平,ens屏蔽采样的数据。等到FIFO清空后,ens重新变为高电平,恢复默认的采样时钟,重新开始采样、识别和存储工作。

4 结论
根据瞬态光辐射探测系统的整体要求,本文提出了基于目标信号特性基础上的变频采集方案,以FPGA为核心控制和处理单元,采用模块化设计思想,编程实现对数据采样和存储的控制。按照工程要求,完成了编程、仿真和外围硬件电路的搭建,实现了对瞬变光辐射信号的数据采集。该方案有效降低了数据采集系统对于存储容量的要求,同时也减小了对数据处理量,对于其他数据存储容量有要求的数据采样系统具有很好的借鉴作用。 绕行塑电感器价格封电感电感

大电流电感

基于WebBrowser保护电讯营业厅公用计算机在移动、联通等电讯营业厅中,为了方便用户浏览手机铃声网站,往往都提供了连上Internet的计算机。但是,由于这些公用计算机面向的用户比较复杂,存在各种安全隐患。有的用户抱着友情检测的态度去检查系统和

ATX电源水冷系统DIY   为了超频,同时要求静音。笔者给CPU、主板北桥、显卡都换上了水冷系统.整机噪音明显降低了不少。但听到电源内风扇发出嗡嗡的响声,难免有些遗憾.因此决定把电源也装上水

采用电感电流内环的单相逆变器设计摘要:分析了单相逆变器系统的数字控制特点,提出了一种带输出电流前馈的PI双环(输出电压外环和滤波电感内环)数字化控制方案,利用极点配置方法对控制系统参数进行了设计,并对系统进行了仿真,最后给出了各种实

注塑加工厂


上一篇新型GPU提高医学成像处理速度

下一篇革命性“混合超级电容”可望实现电池技术跨越式进步


  
  温馨提示
网站首页 | 产品展示 | 科技前沿 | 行业资讯
本公司专业研发、设计、生产、销售贴片电感、插件电感、功率电感、大电流电感、扁平线圈电感、一体成型电感。
专业电感生产制造商,品质优异、交期快。
在线客服
热线电话