您当前的位置:首页 > 技术风向标

理解包络跟踪功率放大器及其特性

时间:2015-08-02  来源:扁平线圈电感厂家  点击:

图6 :选择一个有最佳效率的成形表,可能使功放AM/AM非线性。

在设计一个固定电源的线性功放时,必须将大部分精力用于在最大输出功率处获得适当的线性特性。很多因素都对线性度有影响,包括基本的技术特性、偏置,以及RF匹配等,而设计者的职责是在效率与线性度之间获得最佳的折衷。但对于一个包络跟踪功率放大器,压缩区的线性度不再是一个自主的功放参数。放大器在小功率低电区仍然必须是线性的。但在较大功率上,不存在AM线性度约束,开发人员可以在设计功放时获得最佳的包络跟踪效率,而不必顾虑AM线性度。与AM失真不同,包络成形表并不直接控制相位失真。不过,很多功放工作在包络跟踪模式时,都表现出PM失真的下降。

这种自线性化的结果是,你可以用一个包络跟踪系统,在信号峰值时做更多的压缩,高于固定电源的放大器,从而在给定的线性度下增加了输出功率。图7是针对一个工作在固定电源和包络跟踪模式下的放大器,分别测得的邻道泄漏比与误差矢量幅度性能。在此例中,?40-dBc邻道泄漏比时,采用包络跟踪模式的放大器输出功率要比固定电源模式高2 dB。

图7 :在-40 dBc邻道泄漏比时,包络跟踪放大器的输出功率要比固定电源模式放大器高2 dB (a)。亦显示了误差矢量幅度性能 (b)。

图7 :在-40 dBc邻道泄漏比时,包络跟踪放大器的输出功率要比固定电源模式放大器高2 dB (a)。亦显示了误差矢量幅度性能 (b)。

确定特性的技术

如果没有先定义好的成形表,就不可能测量包络跟踪功放的独立性能。这种定义需要在电源电压和输入功率的全程区间上,测量功放的基本特性,包括输出功率、效率、增益和相位。理论上说,这种特性确定过程可以用一台连续波网络分析仪和一台可调直流电源,但由于有热效应、区间误差以及相位测量时的漂移,得到的结果通常并不好。另外这种方法还太慢,不能采用负载拉移(load-pull)技术。一种替代方案是采用标准自动化测试设备,做脉冲特性测量。这种方法无需使用大带宽、低阻抗电源,并足够的快,可以采用拉移负载的方法。不过该方案很难做精确的相位测量。第三种方法是用真实的波形,并改变成形表,从而能够测量输入功率和供电电压的全部组合。这种方法需要一个电源调压器,但速度快,能够获取精确的相位信息,并且还可以确定存储效应的特性(图8)。

图8: 使用有包络跟踪电源调压器的自动化测试测量配置,可以在动态电源调节情况下,针对所有输入功率与电源电压组合,精确地捕捉和测量功率放大器的即时效率、增益和相位。

图8: 使用有包络跟踪电源调压器的自动化测试测量配置,可以在动态电源调节情况下,针对所有输入功率与电源电压组合,精确地捕捉和测量功率放大器的即时效率、增益和相位。

采用一个基本的包络跟踪功放特性,就可以建立一个功率放大器的准静态数据模型。这个模型可以有输出功率、相位,以及效率作为输出,而输入功率和电源电压作为输入。一旦定义了成形表,就可以用此模型,预测放大器的性能参数,如对标准测试波形的邻道功率比、误差矢量幅度,以及效率。

同样的硬件还可以用于确定功放的器件级特性,以及用已定义成形表对功放系统性能做直接验证(图9)。对于较大带宽的波形,放大器的存储效应可能是非线性的一个主要来源。功放的输出参数(包括AM、PM和效率)现在都取决于时间(即信号的历史),还有即时输入功率与电源电压。存储效应在放大器特性中体现为扩展了AM/AM与AM/PM特性,可以源于输入或输出偏置电路中的电子时间常数,与局部片芯加热相关的热时间常数,或对某种技术的电荷存储效应。

图9 :相同硬件可以同时用于功放器件级的特性确定,以及功放系统性能的直接验证,方法是使用一个预定义的成形表,捕捉AM/AM响应 (a) 以及AM/PM响应 (b)。

图9 :相同硬件可以同时用于功放器件级的特性确定,以及功放系统性能的直接验证,方法是使用一个预定义的成形表,捕捉AM/AM响应 (a) 以及AM/PM响应 (b)。

提高效率

对典型的高峰均功率比信号统计表明,包络跟踪功率放大器通常大部分时间是工作在相对较低的电源电压下,仅偶尔在大功率峰值上有短时高压。因此,优化放大器的匹配,从而获得在目标峰均功率比信号下的最佳效率,就好于简单地在峰值功率和最大电源电压下获得最佳效率的设计,后者是对固定电源功放的做法。设计者可以改变放大器的匹配,围绕着信号概率密度函数的峰值来提高效率,虽然这样会略微损失峰值功率效率,如下式所示(图10):

大电流电感

按照图连接的 怎么仿真结果相差很大可以由偿请教 请各位大佬教教
将最后一级断开,看看结果怎么样,是最后一放大器工作形式不同引起最后数据改变过大。
毕竟是仿真,应该会有误差
误差肯定会有的,难免的哦

基于SSM2603的立体声数字音频CODEC方案介绍利用SSM2603的立体声数字音频CODEC方案ADI公司的SSM2603是低功耗、高质量立体声数字音频CODEC,用于便携式数字音频应用,具有一组立体声可编程增益放大器(PGA)线路输入和一个非立体

M50119P(电视机)红外线遥控发射电路
M50119P是红外线遥控发射集成电路,适用于电视机等。内部电路由键盘输入编码器、指令译码器、振荡器、定时信号发生器、扫描信号发生器、位数语句切换电路、编码电感生

注塑加工厂


上一篇基于ADE7878的多功能电能表的设计

下一篇无刷直流电机调速控制系统中ATmega8芯片应用方案


  
  温馨提示
网站首页 | 产品展示 | 科技前沿 | 行业资讯
本公司专业研发、设计、生产、销售贴片电感、插件电感、功率电感、大电流电感、扁平线圈电感、一体成型电感。
专业电感生产制造商,品质优异、交期快。
在线客服
热线电话