《伺服与运动控制》2012第三期 于镭,卫光 供稿
(青岛科技大学 自主导航与智能控制研究所,山东青岛266042)
1 引言
凸轮机构广泛应用在各种自动机械和自动控制装置中,它能将旋转运动转换为预期的间歇直线往复运动或往复摆动等。从理论上讲,只要适当的设计出凸轮的轮廓曲线, 就可以使推杆得到各种预期的运动规律,而且结构简单紧凑。但凸轮机构在实际应用中也存在着很多局限性:
(1)凸轮机构属于高副点线接触,存在较大的接触应力,无法传递较大的功率;加之凸轮在工作过程中高速运行,所以凸轮磨损快,长时间使用会使从动件的运动失真,因而不能用在那些有高的重复精度要求的场合。
(2)一个凸轮只能实现一种预定的运动规律, 输出运动缺乏柔性,当从动件运动规律改变时,凸轮的生产工艺就需要重新调整或彻底更换[1]。
(3)机械结构复杂,对机械安装人员的要求高,生产成本高,维修调试不方便。
(4)凸轮机构传动过程中存在较大噪音。
2 电子凸轮含义及优点
2.1电子凸轮含义
随着科技进步和数字伺服技术的出现,在传动及控制系统中我们可以利用电子凸轮代替传统的机械凸轮实现各种复杂的往复运动。电子凸轮是以伺服控制技术为基础,并结合先进的微处理器,通过数字化系统实现模拟机械凸轮的功能[2]。
2.2电子凸轮的优点
(1)电子凸轮系统没有机械凸轮的惯性力、弹性变形、刚性冲击等因素,故响应速度快,能适合高速运动的传动装置。
(2)电子凸轮不存在磨损, 凸轮曲线形状不会改变, 因而从动件重复实现预期运动的精度高、稳定性好[3]。
(3)可以方便的更改运动曲线,只要更改相应的运动参数就可以实现不同的运动曲线,大大降低生产安装成本。
(4)传动平稳,机械振动小,噪音低。
3 基于DSP的电子凸轮控制系统
本文中使用Motorola DSP(Digital Singal Processing 数字信号处理) 56F807芯片为处理器协调伺服驱动器和伺服电机实现电子凸轮的控制系统设计;此DSP芯片在80MHz时钟频率下,每秒可处理40×106 条指令,有定时器模块、相位检测模块、PWM输出等功能模块,并具有丰富的外围接口,足够满足电子凸轮的各种曲线需求。
3.1电子凸轮的DSP控制
本文的电子凸轮是通过DSP的相位检测模块不断读取主轴伺服电机的位置,根据主轴位置计算出从轴相对应的速度和位置实现主从轴凸轮曲线对应关系。伺服电机的功能是将电脉冲信号变换成相应的角位移,即给1个电脉冲信号,电机将转过1个固定的角度(可通过设置伺服电机轴分辨率来实现固定角度)。由于伺服电机的角位移与输入脉冲成比例,调整DSP发出的电脉冲频率,就可以对伺服电机进行调速[4]。
3.2电子凸轮的实现步骤
(1)确定主从轴的速度曲线对应关系。
(2)将一个周期内从动轴的位移分段,根据主从轴速度曲线对应关系确定每段位移内从轴的速度。
(3)将每段位移量转化为伺服电机的脉冲数。
(4)根据从轴的速度要求计算出DSP所需要的电脉冲频率。
(5)将上面计算得到的电脉冲频率作为DSP的PWM模块的模值输出即可控制伺服电机的转速,实现电子凸轮功能。
4 基于DSP的电子凸轮控制系统的应用
本文以三伺服自动包装机为例介绍基于DSP的电子凸轮的具体应用。如图1所示为新型三伺服自动包装机工作原理图。
从图中看到,该机横封切断辊刀、包装膜轴和卸料传送带、送料拨叉轴分别由单独的伺服电机作为动力该机集自动送料、包装物品、封口、切断于一体,是一种高效率的连续式的包装机。其控制的重点和难点在于三轴的位置及速度同步以及凸轮运动的实现。位置同步是:横封的切割点必须在塑料膜的色标点内,且保证横封不能切到物料;速度同步:是横封刀切割时的速度与此时塑料膜的速度以及物料速度要相等;凸轮运动是:由于包装的袋长在一定范围内是可变的,横封刀旋转1周所经过的距离一般不等于袋长,这就要求横封在一定时间内要完成由同步速度到变速再到同步速度的凸轮运动过程。

图1三伺服自动包装机工作原理图
以包装膜轴为主轴,横封刀轴为从轴,它们的速度曲线根据袋长与横封刀的周长有三种关系:
嵌入式系统设计与应用 使用SBC和DSP 嵌入式系统是以应用为中心、以计算机技术为基础、软硬件可裁剪、适应应用系统对 功能、可靠性、成本、体积、功耗等有严格要求的专用计算机系统。其主要由嵌入式处理器、 相关支撑硬件、嵌入式操作系统及应用软件 基于MAX+PLUSⅡ的十进制计数器的设计摘要:MAX+PLUSⅡ软件是一种易学易用的设计开发环境,它在数字电路设计中的应用越来越广泛。基于此,首先介绍了MAX+PLUSⅡ 软件常用的设计输入方法;其次设计了十进制计数电路,并用MAX+PLU 电感和磁导率的关系今天突然想电感和磁导率的具体关系,就顺便推导了一下,不知是否正确L电感,Φ单匝磁通量,B磁通密度,H磁场强度,Len磁路长度,A截面积,N匝数,I电流,μ磁导率L=NΦ/I,Φ=BA,B=μH,H=NI/LenL
1/2 1 2 下一页 尾页 |