图6就是一个使用了象素级A/D转换器的读出电路原理图,它由N×M的象素单元阵列,行解码器,高精度放大器和列地址解码/输出复选器组成。其中一个A/D转换器和多个光电检测器一起构成一个象素单元。

目前用于象素级的A/D转换器主要有Fowler[4]提出的过采样Sigma-Delta结构A/D转换器和Yang提出的Multi–Channel–Bit–Serial(MCBS)结构A/D转换器. 2.3.1 精简型过采样Sigma Delta结构A/D转换器 过采样Sigma-Delta A/D转换器的特点是模拟部分比例少,精度要求低,(减小了Vdd波动,器件匹配,KT/C噪声对电路性能的影响),数字部分比例大,比较适宜用标准CMOS工艺实现。一阶过采样Sigma-Delta的结构简单、速度低、精度高,恰好满足了图像传感器对象素级A/D转换器的要求。一阶过采样Sigma-Delta结构A/D转换器原理如图7所示。 信息来源:http://tede.cn 信息来自:输配电设备网
输入信号过采样后经过积分器积分,然后通过量化器反馈回输入端,同时输出量化后的数字信号,数字信号经过梳状滤波器降频到Nyquist频率。 模压电感器 Fowler利用Sigma-Delta A/D转换器得思想对传统Sigma-Delta A/D转换器进行改进,精简了电路,提出的CMOS象素级集成的精简型Sigma-Delta A/D转换器电路。 它的一个单元采用了四个光电检测器和一个象素级A/D转换器,并且通过17只管子来实现。工作时,由于感光后光电二极管产生了光电荷,光电荷储存在光电二极管节电容中产工字电感生了节点电压,转换器通过被复选器选中一个光电二极管,被选光电二极管的节电压通过受时钟控制比较器被量化。 该设计中比较器工作于亚阈值区以减少功耗和噪声,增加增益,并且减小D/A转换器中的漏电流。偏置电流也被设置成能够够完成所需要采样率的足够小值,。这一位的D/A转换器是通过一个模拟信号移位寄存器来实现。 电感器厂家于数字部分比较复杂,占用的面积大,Fowler只把Sigma-Delta A/D转换器的模拟部分集成与图像传感器芯片中,而把数字部分放在片外。这种做法缩小了芯片面积,但是过采样会导致输出数据量巨大,由于数字部分设置在片外,这样对于大尺寸或者高速CMOS图像传感器芯片,需要很高的I/O带宽,所以限制了它的应用范围。 2.3.2 MCBS结构A/D转换器 传统的位并行(bit parallel)和位串行(bit serial)A/D转换技术在面积,功耗上的限制无法做为象素级集成的A/D转换器使用。1998年Stanford 大学的学者David Yang提出了第一种Nyquist率的MCBS(multi-channel-bit serial) 结构的象素级A/D转换器,它的采样频率只有信号频率的2倍,所以不会有信号输出数据量过大的问题。它由电感器q值象素单元电路和芯片级电路组成,每一个象素单元采用了一个比较器和一个锁存器构成。而所有象素单元共用一个有限状态机电路和一个M位的DAC电路。 信息请登陆:输配电设备网 
转换原理是通过研究编码表找出各位的规律,以对一个在0~1之间的输入信号进行3位的GRAY码为例,判断MSB位只需将输入信号与1/2进行比较,判断LSB位需要将信号与1/8,3/8,5/8,7/8进行比较。这种比较在并行结构A/D一体电感里是以同时比较的方式实现。我们这里通过多时钟实现对各位的串行比较。 通过有限状态机提供的一个台阶上升的RAMP信号与输入模拟信号经过多时钟周期的串行多位比较,3位精度的A/D转换器,求出最高位需要一个时钟周期,求出次高位需要二个时钟周期,最低位需要四个时钟周期,各位的结果送入由有限状态机提供的BITX信号控制的锁存器并串行输出。MCBS结构A/D转换器通过多周期的复用技术来来模拟全并行A/D转换器中的电阻分压与输入模拟信号的多位的并行比较,从而极大减小了A/D转换器面积,并且可以采用稳定的简单电路来实现。
有没有知道SY50135,OB2530T PIN对PIN的芯片
你这两个IC都是pin to pin的,还要找第三款备用啊?
还是说这两款IC都有问题?
OB2530CT与SY50133我们有PIN对PIN什么型号找第三家我们有性价比更好的,可批量供货,如有 [开关电源]Ucc28019各管脚电压正常就是没有PWM管脚 电压2 3.53 -0.44 0.85 -0.46 4.5上图估计是没有负载Siderlee 发表于 2015-8-3 09:53上图现在通过调节反馈电位器已经在不加负载的时候调节到理想的36V输出,当加一个18欧的负载时电压拉低到27V左右。 再调节电位器升高输出时达到31V的时候桥烧了。 换个桥还是电流很大导致桥很热,感觉桥后边有什么短路了,但是没有 MCU改善DC/DC变压器输出在混动/电动汽车上的应 人们对气候变化和汽油价格的担忧,使得混合动力汽车和纯电动汽车等环保汽车市场日益升温。这些汽车往往通过一台由高压锂电池驱动的电动机获取动力。为了实现最高效率,我
3/4 首页 上一页 1 2 3 4 下一页 尾页 |