您当前的位置:首页 > 技术风向标

Freescale MPC5634M 32位MCU开发方案

时间:2015-08-24  来源:扁平线圈电感厂家  点击:


– Provides rich array of extended 64-bit loads and stores to/from extended GPRs

– Fully code compatible with e200z6 core

— Floating point (FPU)

– IEEE 754 compatible with software wrapper

– Scalar single precision in hardware, double precision with software library

– Conversion instructions between single precision floating point and fixed point

– Fully code compatible with e200z6 core

— Long cycle time instructions, except for guarded loads, do not increase interrupt latency

— Extensive system development support through Nexus debug port

• Advanced microcontroller bus architecture (AMBA) crossbar switch (XBAR)

— Three master ports, four slave ports

– Masters: CPU Instruction bus; CPU Load/store bus (Nexus); eDMA

– Slave: Flash; SRAM; Peripheral Bridge; calibration EBI

— 32-bit internal address bus, 64-bit internal data bus

• Enhanced direct memory access (eDMA) controller

— 32 channels support independent 8-bit, 16-bit, or 32-bit single value or block transfers

— Supports variable sized queues and circular queues

— Source and destination address registers are independently configured to post-increment or remain constant

— Each transfer is initiated by a peripheral, CPU, or eDMA channel request

— Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single value or block transfer

• Interrupt controller (INTC)

— 191 peripheral interrupt request sources

— 8 software setable interrupt request sources

— 9-bit vector

– Unique vector for each interrupt request source

– Provided by hardware connection to processor or read from register

— Each interrupt source can be programmed to one of 16 priorities

— Preemption

– Preemptive prioritized interrupt requests to processor

– ISR at a higher priority preempts ISRs or tasks at lower priorities

– Automatic pushing or popping of preempted priority to or from a LIFO

– Ability to modify the ISR or task priority. Modifying the priority can be used to implement the Priority Ceiling Protocol for accessing shared resources.

— Low latency—three clocks from receipt of interrupt request from peripheral to interrupt request to processor

• Frequency Modulating Phase-locked loop (FMPLL)

— Reference clock pre-divider (PREDIV) for finer frequency synthesis resolution

— Reduced frequency divider (RFD) for reducing the FMPLL output clock frequency without forcing the FMPLL to re-lock

— System clock divider (SYSDIV) for reducing the system clock frequency in normal or bypass mode

— Input clock frequency range from 4 MHz to 20 MHz before the pre-divider, and from 4 MHz to 16 MHz at the FMPLL input

— Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz

— VCO free-running frequency range from 25 MHz to 125 MHz

— Four bypass modes: crystal or external reference with PLL on or off

— Two normal modes: crystal or external reference

— Programmable frequency modulation

– Triangle wave modulation

– Register programmable modulation frequency and depth

— Lock detect circuitry reports when the FMPLL has achieved frequency lock and continuously monitors lock status to report loss of lock conditions

– User-selectable ability to generate an interrupt request upon loss of lock

– User-selectable ability to generate a system reset upon loss of lock

— Clock quality monitor (CQM) module provides loss-of-clock detection for the FMPLL reference and output clocks

– User-selectable ability to generate an interrupt request upon loss of clock

– User-selectable ability to generate a system reset upon loss of clock

– Backup clock (reference clock or FMPLL free-running) can be applied to the system in case of loss of clock

• Calibration bus interface (EBI)

— Available only in the calibration package (496 CSP package)

— 1.8 V to 3.3 V ± 10% I/O (1.6 V to 3.6 V)

— Memory controller with support for various memory types

— 16-bit data bus, up to 22-bit address bus

— Selectable drive strength

— Configurable bus speed modes

— Bus monitor

— Configurable wait states

大电流电感

基于AP3031的高效LED背光驱动电源方案随着电力电子技术的发展,越来越多的便携设备开始使用中小尺寸(7`~10`)的液晶面板作为显示输出装置。由于便携设备电池容量有限,低效率的背光电源方案会严重缩短设备的工作时间,因此如何提高背光驱动的效率

DSP和FPGA在大尺寸激光数控加工系统中的运用激光切割和雕刻以其精度高、视觉效果好等特性,被广泛运用于广告业和航模制造业。在大尺寸激光加工系统的开发过程中,加工速度与加工精度是首先要解决的问题。解决速度问题的一般方法是在电机每次运动前、后设置加、

基于AD7862和dsPIC30F的数据采集系统摘要:为提高数据采集系统的采集精度和转换速度,设计基于AD7862和dstPIC30F6010A的数据采集系统,详细介绍AD7862和dsPIC30F6010A的特点和性能;并介绍该系统硬件部分和软件

注塑加工厂


上一篇基于MSP430和USB的数据采集系统

下一篇基于CPLD的智能拨号报警系统


  
  温馨提示
网站首页 | 产品展示 | 科技前沿 | 行业资讯
本公司专业研发、设计、生产、销售贴片电感、插件电感、功率电感、大电流电感、扁平线圈电感、一体成型电感。
专业电感生产制造商,品质优异、交期快。
在线客服
热线电话